Practice 4-6

- 1. Suppose you have a dark closet containing seven blue shirts, five yellow shirts, and eight white shirts. You pick two shirts from the closet. Find each probability.
 - a. P(blue then yellow) with replacing
 - c. P(yellow then yellow) with replacing
 - e. P(yellow then white) with replacing
 - g. P(blue then blue) with replacing
- **b.** P(blue then yellow) without replacing
- d. P(yellow then yellow) without replacing
- f. P(yellow then white) without replacing
- h. P(blue then blue) without replacing

\boldsymbol{A} and \boldsymbol{B} are independent events. Find the missing probability.

2.
$$P(A) = \frac{3}{7}$$
, $P(A \text{ and } B) = \frac{1}{3}$. Find $P(B)$.

3.
$$P(B) = \frac{1}{5}$$
, $P(A \text{ and } B) = \frac{2}{13}$. Find $P(A)$.

4.
$$P(B) = \frac{15}{16}$$
, $P(A \text{ and } B) = \frac{3}{4}$. Find $P(A)$.

5.
$$P(A) = \frac{8}{15}, P(B) = \frac{3}{4}$$
. Find $P(A \text{ and } B)$.

- **6.** Suppose you draw two tennis balls from a bag containing seven pink, four white, three yellow, and two striped balls. Find each probability.
 - a. P(yellow then pink) with replacing
 - c. P(pink then pink) with replacing
 - e. P(striped then striped) with replacing
 - $\dot{\mathbf{g}}$. P(pink then white) with replacing
- **b.** P(yellow then pink) without replacing
- d. P(pink then pink) without replacing
- f. P(striped then striped) without replacing
- **h.** P(pink then white) without replacing

\boldsymbol{A} and \boldsymbol{B} are independent events. Find the missing probability.

7.
$$P(A) = \frac{3}{4}$$
, $P(A \text{ and } B) = \frac{1}{2}$. Find $P(B)$.

8.
$$P(A) = \frac{3}{7}$$
, $P(B) = \frac{1}{6}$. Find $P(A \text{ and } B)$.

9.
$$P(B) = \frac{9}{10}$$
, $P(A \text{ and } B) = \frac{3}{5}$. Find $P(A)$.

10.
$$P(B) = \frac{1}{4}$$
, $P(A \text{ and } B) = \frac{3}{20}$. Find $P(A)$.

Use an equation to solve each problem.

- 11. A bag contains green and yellow color tiles. You pick two tiles without replacing the first one. The probability that the first tile is yellow is $\frac{3}{5}$. The probability of drawing two yellow tiles is $\frac{12}{35}$. Find the probability that the second tile you pick is yellow.
- 12. A bag contains red and blue marbles. You pick two marbles without replacing the first one. The probability of drawing a blue and then a red is $\frac{4}{15}$. The probability that your second marble is red if your first marble is blue is $\frac{2}{3}$. Find the probability that the first marble is blue.