Practice 4-6 - 1. Suppose you have a dark closet containing seven blue shirts, five yellow shirts, and eight white shirts. You pick two shirts from the closet. Find each probability. - a. P(blue then yellow) with replacing - c. P(yellow then yellow) with replacing - e. P(yellow then white) with replacing - g. P(blue then blue) with replacing - **b.** P(blue then yellow) without replacing - d. P(yellow then yellow) without replacing - f. P(yellow then white) without replacing - h. P(blue then blue) without replacing ## \boldsymbol{A} and \boldsymbol{B} are independent events. Find the missing probability. **2.** $$P(A) = \frac{3}{7}$$, $P(A \text{ and } B) = \frac{1}{3}$. Find $P(B)$. **3.** $$P(B) = \frac{1}{5}$$, $P(A \text{ and } B) = \frac{2}{13}$. Find $P(A)$. **4.** $$P(B) = \frac{15}{16}$$, $P(A \text{ and } B) = \frac{3}{4}$. Find $P(A)$. **5.** $$P(A) = \frac{8}{15}, P(B) = \frac{3}{4}$$. Find $P(A \text{ and } B)$. - **6.** Suppose you draw two tennis balls from a bag containing seven pink, four white, three yellow, and two striped balls. Find each probability. - a. P(yellow then pink) with replacing - c. P(pink then pink) with replacing - e. P(striped then striped) with replacing - $\dot{\mathbf{g}}$. P(pink then white) with replacing - **b.** P(yellow then pink) without replacing - d. P(pink then pink) without replacing - f. P(striped then striped) without replacing - **h.** P(pink then white) without replacing ## \boldsymbol{A} and \boldsymbol{B} are independent events. Find the missing probability. 7. $$P(A) = \frac{3}{4}$$, $P(A \text{ and } B) = \frac{1}{2}$. Find $P(B)$. **8.** $$P(A) = \frac{3}{7}$$, $P(B) = \frac{1}{6}$. Find $P(A \text{ and } B)$. **9.** $$P(B) = \frac{9}{10}$$, $P(A \text{ and } B) = \frac{3}{5}$. Find $P(A)$. **10.** $$P(B) = \frac{1}{4}$$, $P(A \text{ and } B) = \frac{3}{20}$. Find $P(A)$. ## Use an equation to solve each problem. - 11. A bag contains green and yellow color tiles. You pick two tiles without replacing the first one. The probability that the first tile is yellow is $\frac{3}{5}$. The probability of drawing two yellow tiles is $\frac{12}{35}$. Find the probability that the second tile you pick is yellow. - 12. A bag contains red and blue marbles. You pick two marbles without replacing the first one. The probability of drawing a blue and then a red is $\frac{4}{15}$. The probability that your second marble is red if your first marble is blue is $\frac{2}{3}$. Find the probability that the first marble is blue.