Practice 8-6

Geometric Sequences

Find the next three terms of each sequence.

3.
$$18, 9, \frac{9}{2}, \frac{9}{4}, \dots$$

5.
$$-2, 20, -200, 2000, \dots$$

7.
$$\frac{1}{3}$$
, $1\frac{1}{3}$, $5\frac{1}{3}$, $21\frac{1}{3}$, ...

4.
$$1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \dots$$

6. 30,
$$-10, \frac{10}{3}, -\frac{10}{9}, \dots$$

8. 20, 4,
$$\frac{4}{5}$$
, $\frac{4}{25}$, . . .

Determine whether each sequence is arithmetic or geometric.

13.
$$1, \frac{2}{5}, \frac{4}{25}, \frac{8}{125}, \dots$$

16. 6,
$$-3, \frac{3}{2}, -\frac{3}{4}, \dots$$

Write a rule for each sequence.

19.
$$18, 9, \frac{9}{2}, \frac{9}{4}, \dots$$

20.
$$1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \dots$$

22. 30,
$$-10, \frac{10}{3}, -\frac{10}{9}, \dots$$

Find the first, fourth, and eighth terms of each sequence.

27.
$$A(n) = 2 \cdot 3^{n-1}$$

28.
$$A(n) = 3 \cdot 4^{n-1}$$

29.
$$A(n) = 3 \cdot 2^{n-1}$$

30.
$$A(n) = -1 \cdot 5^{n-1}$$

31.
$$A(n) = 4 \cdot 2^{n-1}$$

32.
$$A(n) = \frac{1}{2} \cdot 2^{n-1}$$

33.
$$A(n) = 0.1 \cdot 4^{n-1}$$

34.
$$A(n) = -2.1 \cdot 3^{n-1}$$

35.
$$A(n) = 10 \cdot 5^{n-1}$$

Write a rule and find the given term in each geometric sequence described below.

- **36.** What is the sixth term when the first term is 4 and the common ratio is 3?
- **37.** What is the fifth term when the first term is -2 and the common ratio is $-\frac{1}{2}$?
- **38.** What is the tenth term when the first term is 3 and the common ratio is -1.2?
- **39.** What is the fourth term when the first term is 5 and the common ratio is 6?
- **40.** Suppose a manufacturer invented a computer chip in 1978 that had a computational speed of s. The company improves its chips so that every 3 years, the chip doubles in speed. What would the chip's speed have been for the year 2002? Write your solution in terms of s.