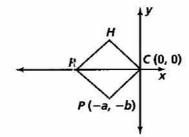
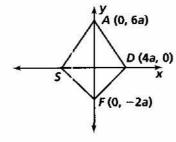

Practice 6-7

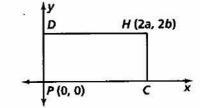

Proofs Using Coordinate Geometry

- 1. Given $\triangle HAL$ with perpendicular bisectors i, b, and m, complete the following to show that i, b, and m intersect in a point.
 - **a.** The slope of \overline{HA} is $\frac{-q}{p}$. What is the slope of line *i*?
 - **b.** The midpoint of \overline{HA} is (p, q). Show that the equation of line i is $y = \frac{p}{q}x + q \frac{p^2}{q}$.
 - **c.** The midpoint of \overline{HL} is (r + p, 0). What is the equation of line m?
 - **d.** Show that lines i and m intersect at $(r + p, \frac{rp}{q} + q)$.
 - **e.** The slope of \overline{AL} is $\frac{-q}{r}$. What is the slope of line b?
 - **f.** What is the midpoint of \overline{AL} ?
 - **g.** Show that the equation of line b is $y = \frac{r}{q}x + q \frac{r^2}{q}$.
 - **h.** Show that lines b and m intersect at $(r + p, \frac{rp}{q} + q)$.
 - i. Give the coordinates for the point of intersection of i, b, and m.



Complete Exercises 2 and 3 without using any new variables.

- 2. RHCP is a rhombus.
 - a. Determine the coordinates of R.
 - **b.** Determine the coordinates of H.
 - **c.** Find the midpoint of \overline{RH} .
 - **d.** Find the slope of \overline{RH} .


- 3. ADFS is a kite.
 - a. Determine the coordinates of S.
 - **b.** Find the midpoint of \overline{AS} .
 - **c.** Find the slope of \overline{AS} .
 - **d.** Find the midpoint of \overline{DF} .
 - **e.** Find the slope of \overline{DF} .

4. Complete the coordinates for rectangle *DHCP*. Then use coordinate geometry to prove the following statement: The diagonals of a rectangle are congruent (Theorem 6-11).

Given: rectangle DHCP

Prove: $\overline{DC} \cong \overline{HP}$

